module NCILL.Admit.One where
open import Data.List
open import Data.Empty
open import ListExtras
open import AssocProofs
open import NCILL.Types
open import NCILL.Ctx
open import NCILL.Sequent
open import NCILL.ProofUtils
open import NCILL.Admit.Action
admit-unit-L-after : (Γ Ψ Δ₁ Δ₂ : Ctx) → (A B : Ty)
  → Action
    Γ A
    (Δ₁ ++ Ψ ++ A ∷ Δ₂) B
    ((Δ₁ ++ ♯1 ∷ Ψ) ++ Γ ++ Δ₂) B
admit-unit-L-after Γ Ψ Δ₁ Δ₂ A B =
  action (Δ₁ ++ Ψ) obligation₁ λ t → process t by
    (Δ₁ ++ Ψ) ++ Γ ++ Δ₂      ⊢ B ≡Γ⟨ obligation₂  ⟩
    Δ₁ ++ Ψ ++ Γ ++ Δ₂        ⊢ B $⟨ unit-L Δ₁ ⟩
    Δ₁ ++ ♯1 ∷ Ψ ++ Γ ++ Δ₂   ⊢ B ≡Γ⟨ obligation₃ ⟩
    (Δ₁ ++ ♯1 ∷ Ψ) ++ Γ ++ Δ₂ ⊢ B ∎
  where
    obligation₁ : Δ₁ ++ Ψ ++ A ∷ Δ₂ ≡ (Δ₁ ++ Ψ) ++ A ∷ Δ₂
    obligation₁ = xs++xs++xs≡[xs++xs]++xs Δ₁ Ψ (A ∷ Δ₂)
    obligation₂ : (Δ₁ ++ Ψ) ++ Γ ++ Δ₂ ≡ Δ₁ ++ Ψ ++ Γ ++ Δ₂
    obligation₂ = ++-assoc Δ₁ Ψ (Γ ++ Δ₂)
    obligation₃ : Δ₁ ++ ♯1 ∷ Ψ ++ Γ ++ Δ₂ ≡ (Δ₁ ++ ♯1 ∷ Ψ) ++ Γ ++ Δ₂
    obligation₃ = xs++xs++xs++xs≡[xs++xs]++xs++xs Δ₁ (♯1 ∷ Ψ) Γ Δ₂
admit-unit-L-before : (Γ Ψ Δ₁ Δ₂ : Ctx) → (A B : Ty)
  → Action
    Γ A
    ((Δ₁ ++ A ∷ Ψ) ++ Δ₂) B
    (Δ₁ ++ Γ ++ Ψ ++ ♯1 ∷ Δ₂) B
admit-unit-L-before Γ Ψ Δ₁ Δ₂ A B =
  action Δ₁ obligation₁ λ t →
    subst-Sqnt-Γ obligation₃
    (unit-L (Δ₁ ++ Γ ++ Ψ)
    (subst-Sqnt-Γ obligation₂ t))
  where
    obligation₁ : (Δ₁ ++ A ∷ Ψ) ++ Δ₂ ≡ Δ₁ ++ A ∷ Ψ ++ Δ₂
    obligation₁ = ++-assoc Δ₁ (A ∷ Ψ) Δ₂
    obligation₂ : Δ₁ ++ Γ ++ Ψ ++ Δ₂ ≡ (Δ₁ ++ Γ ++ Ψ) ++ Δ₂
    obligation₂ = xs++xs++xs++xs≡[xs++xs++xs]++xs Δ₁ Γ Ψ Δ₂
    obligation₃ : (Δ₁ ++ Γ ++ Ψ) ++ ♯1 ∷ Δ₂ ≡ Δ₁ ++ Γ ++ Ψ ++ ♯1 ∷ Δ₂
    obligation₃ = [xs++xs++xs]++xs≡xs++xs++xs++xs Δ₁ Γ Ψ (♯1 ∷ Δ₂)
admit-unit-L : (Γ Δ₁ Δ₂ Ω₁ Ω₂ : Ctx) → (A B : Ty)
    → Ω₁ ++ ♯1 ∷ Ω₂ ≡ Δ₁ ++ A ∷ Δ₂
    → (♯1 ≡ A → ⊥)
    → Action Γ A (Ω₁ ++ Ω₂) B (Δ₁ ++ Γ ++ Δ₂) B
admit-unit-L _ Δ₁ _ Ω₁ _ _ _ eq _ with match-cons Ω₁ Δ₁ eq
admit-unit-L _ _ _ _ _ _ _ _ ineq | here _ eq _ with ineq eq
... | ()
admit-unit-L Γ Δ₁ _ _ Ω₂ A B eq ineq | before ms refl refl =
  admit-unit-L-before Γ ms Δ₁ Ω₂ A B
admit-unit-L Γ _ Δ₂ Ω₁ _ A B eq ineq | after ms refl refl =
  admit-unit-L-after Γ ms Ω₁ Δ₂ A B